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Fluctuations in Mean-Field 
Self-Organized Criticality 
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We present two models that exhibit self-organized criticality at the mean-field 
level. These can be variously interpreted in epidemiological or chemical reaction 
terms. By studying the master equation for these models we find, however, that 
only in one of them does the self-organized critical behavior survive in the face 
of fluctuations. For this model we show the spectrum of the evolution operator 
to have spectral collapse, i.e., instead of a gap, as would occur in noncritical 
behavior, there are eigenvalues that approach zero as an inverse power of 
system size. 

KEY W O R D S :  Self-organized criticality; directed percolation; epidemic 
models; chemical reactions; transfer matrix; spectral collapse. 

1. INTRODUCTION 

Self-organized criticality has been proposed t~) as a general principle under- 
lying the common  appearance of fractal s t ruc tures~despi te  their non-  
genericity from the phase transi t ion point  of v iew--as  well as other natural  
phenomena.  Subsequent  studies related some of these features to spectral 
properties of associated operators/2) Fully developed models of self- 
organized criticality tend to require computer  analysis: it is already difficult 
to treat critical phenomena  analytically without including a time 
dependence of "parameters"! 

In a previous publicat ion t3) we considered a mean-field model in 
which the critical phenomenon  was itself so simple that the t ime-dependent  
progress of the system toward criticality (under rules we gave for the full 
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model) could be studied analytically. The model has been called c4~ 
"percolitis" because it can be phrased in epidemiological terms. The time 
evolution of the percolitis parameters, that is, the self-organized criticality, 
was studied in the mean-field approximation and we presented numerical 
evidence that fluctuations in the system did not destroy the approach of the 
system to criticality. We remark, incidentally, that the work for whose 
didactic needs the percolitis model was invented exhibits a kind of soft 
self-organized criticality tS) which has yet to be fully understood. 

In other studies, t6) the spectral properties of the transfer matrix for a 
modified version of the mean-field model were examined. One objective 
was to find the finite-size scaling properties of the model. A second 
objective was preparation for the present work. 

In the current paper, our objective is to study whether mean-field self- 
organized critical behavior is preserved in the presence of fluctuations and 
also to observe whether and how self-organized criticality leads to spectral 
collapse in linear operators, such as the transfer matrix, associated with the 
model. The answer to the issue of fluctuations is not simple: we shall pre- 
sent two versions of a model, both of which display self-organized critical 
behavior at the level of mean-field theory, such that the fluctuations 
destroy this behavior for one variant and preserve it for the other. The 
starting point is the single-step directed percolation model of ref. 6, where 
at each time step, a sick person can spontaneously recover or can infect a 
healthy person with some probability. We can also think of this model as 
a chemical reaction for two species S and R 

S l~ R 

S + R  ~ ~ 2S  

The total population S + R = K is a conserved quantity. The symbols S and 
R refer both to the name of the species and to the number of its elements. 
The quantities above the arrows indicate the reaction rates. With either the 
chemical or the epidemic interpretation, the model depends on a parameter 

and exhibits critical behavior at r = 1. The analysis of the metastable 
state for 4 >  1 and the critical approach to equilibrium were studied 
numerically in ref. 6 and these results were confirmed and extended by 
analytical methods in ref. 7. 

In the present paper, we couple this system to another species called 
I by a third chemical reaction 2 S ~  S + I  ("I"  can be thought of as 
"immune" or "inert"). In this case K ( = S +  R) is no longer conserved, the 
effective ~ parameter (the rate for S +  R ~ 2S, see below) now depends on 
K, and the system has self-organized critical behavior at the mean-field 
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level. (The precise meaning of our term "effective" is given in Section 5.) 
For a generic set of initial conditions, the parameter ~ adjusts itself so that 
it tends to its critical value 1. However, when we look in detail at the 
fluctuations of the birth and death process, we will see that the true 
process--as opposed to its mean-field est imate-~loes not preserve 
this self-organized critical behavior. Nevertheless, if we use the reaction 
3S ~ 2S + I instead of 2S ~ S + I, the birth and death process does exhibit 
self-organized critical behavior. 

We describe these two models in Section 2, where we also write the 
master equations and the backward equations. In Section 3 we establish 
self-organized criticality at the mean-field level. Section 4 analyzes the 
structure of the backward equation. This analysis is used in Section 5 to 
describe the largest eigenvalue of the master equation by perturbation 
theory applied to the spectrum of the master equation of the single-step 
percolation model of ref. 7. In Section 6 we perform a rescaling and 
matched asymptotics for the equation for the generating function (much as 
in ref. 7) and find that the matched asymptotics can be successfully applied 
to the version of the model for which our other analysis shows the survival 
of the self-organized criticality in the face of fluctuations, but not for the 
version for which it does not. 

2. DESCRIPTION OF THE M O D E L S  

In this work we use a chemical picture of the models. A population of 
N particles is composed of three chemical species called S, R, and L At 
each time step we have 

S(t )  + R( t )  + I( t )  = N (2.1) 

N does not vary. For convenience we introduce the number of particles of 
species S or R, 

K = S +  R (2.2) 

so that K~>S. Because of (2.1) and (2.2), the state of the population can 
be given by (S, K). Let us assume that at time t, the population is in the 
state (S, K). At the next time step t + At, where At is a small time interval, 
the population varies according to the following rules: 

R.I. An S particle can spontaneously become an R particle 

S ~ R  

so that this is a transition from the state (S, K) to the state ( S -  1, K). The 
probability of this transition is 

S A t  (2.3) 
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In effect this is the conditional probability 

Pr[State at time t + At is ( S -  1, K)] State at time t is (S, K)] = S At 

There is no explicit parameter associated with this transition (i.e., its rate 
is unity), so that it is here that the time scale is established. 

R.2. An R particle can meet an S particle and transform into an S 
particle, 

R + S - - * 2 S  

The transition is from the state (S,K) to the state ( S + I , K ) .  The 
(conditional) probability of this transition is 

x S ( K -  S) At 
(2.4) 

( N -  1) 

so that x (with appropriate scaling and state-dependent factors) is the rate 
of this reaction. 

R.3. Two S particles meet and transform into an S particle and an I 
particle, 

2 S ~ S + I  

The transition is from the state (S, K) to the state ( S - 1 ,  K - 1 ) .  The 
(conditional) probability of this transition is 

y S ( S -  1 ) At 
( N -  l) (2.5) 

so that y (with appropriate scaling and state-dependent factors) is the rate 
of this reaction. 

The alternative rule, mentioned above, to be used in place of R.3 
is R.3': 

R.3'. Three S particles can meet and transform into two S particles 
and an I particle 

3 S ~ 2 S + I  

The transition is from the state (S, K) to the state ( S - 1 ,  K - 1 ) .  The 
(conditional) probability of this transition is 

y S ( S -  1 ) ( S -  2) At 
(2.5') 

( N -  1 ) ( N -  2) 

so that here, too, y is the rate of the reaction. 
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Let P(S, K, t) be the probability that the system is in the state (S, K) 
at time t. Using the foregoing rules, we can express P(S, K, t + At) in terms 
of P(S,K,t).  Taking OP(S,K,t)/at to be the limit as At ~ 0 of 
[ P(S, K, t + A t ) -  P(S, K, t) ]/At, we obtain the following master equations: 
For the rules R.I, R.2, and R.3 

OP(S, K, t) = (S + 1 ) P(S+ 1, K, t) + x ( S -  1 ) (K-  S+ 1 ) 
at N -  1 

+yS(S+ 1) P(S+ 1, K+ 1, t) 
N - 1  

( x S ( K - S )  + y S ( S - 1 ) ) p ( S , K , t )  
-- S +  N -  1 - ~ - - 1  

For the rules R.1, R.2, and R.3' 

OP(S, K, t) 
at 

P ( S -  1, K, t) 

(2.6) 

(S+  1 )P (S+  1, K, t )+x ,S - (  1 ) ( K - S +  1) P ( S -  1, K, t) 
N - 1  

yS(S+ 1)(S+ 2) 
+ P(S+ I, K+ 1, t) 

( N -  1 ) ( N -  2) 

{S x S ( K - S )  FS(S-1)(S-_2)'~ P(S, K, t) 
- ~  + - ~ - T  + ( N - 1 ) ( N - 2 )  ] 

(2.6') 

Note that Eqs. (2.6) and (2.6') differ only in the y term. Equations (2.6) 
and (2.6') can be summarized in matrix form: 

OP(S, K, t) ~ P(S', K', t) U(S', K'; S, K) (2.7) 
Ot S'.K' 

where U is the transfer matrix. Clearly there are two U's, corresponding to 
the unprimed and primed equations. Their detailed form will be analyzed 
in Section 4. 

The backward equation associated with (2.7) uses the transpose of U: 

Ow(S, K, t )_  ~. U(S, K; S', K') w(S', K', t) (2.8) 
Ot S'.K' 

where w(S,K,t)  is the backward vector at time t. The matrix 
U(S, K; S', K') has eigenvalues 2, with left eigenvectors p,(S, K) and right 
eigenvectors w,(S, K). If p,(S, K) and wa(S, K) are left and right eigenvec- 
tors associated with different eigenvalues, we have the orthogonality 
property 

p,(S, K) wa(S, K) = 3~, a (2.9) 
S ,K 

822/74/3-4-10 
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For future use in Section 4, we explicitly write the backward equations 
associated with Eqs. (2.6) and (2.6'). As usual, in the following, unprimed 
and primed equations correspond to unprimed and primed rules (R.3 and 
R.3', respectively): 

Ow( S, K, t ) -  S w ( S -  1, K, t) + x S ( K -  S) w(S + 1, K, t) 
Ot N -  I 

y S ( S -  1) 
+ w ( S -  1, K -  1, t) 

N - 1  

- ( S+  xS(K-- S) . y S ( S -  ~ - i  + .~__ 1)) w(S, K, t) (2.10) 

Ow( S, K, t)= S w ( S -  1, K, t) + x S ( K -  S) w. (S + 1, K, t) 
Ot N -  1 

y S ( S -  1 ) ( S -  2) 
+ w ( S -  1, K -  1, t) 

( N -  1 ) ( N -  2) 

_ ( s + X S ( K - S )  y S ( S -  1)(S-2) 'X 
-N-~--i + ( - ~ - - i ~ )  w(S, K, t) (2.10') 

Note from (2.6) or (2.6') that the eigenvectors of the forward equation 
with eigenvalue 2 = 0 are of the form 

P~:o(S, K) = 6(S) 6 ( K -  Ko) (2.11) 

for all possible Ko>t0. One eigenvector of the backward equation with 
eigenvalue 0 is obviously 

w(S, K) = 1 for all S, K (2.12) 

This expresses the conservation of probability. In particular, from (2.9), 
any left eigenvector P(S, K) with eigenvalue 2 4:0 will satisfy 

~. P(S,  K)  = 0 
S,K 

3. MEAN-F IELD SELF-ORGANIZED CRITICALITY 

Consider the mean-field limit for the models of the previous section. 
We study the quantities 

(S(t))  (K(t)) 
s(t) = - - ,  k(t) (3.1) 

N N 
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Equations of motion for s ( t )  and k ( t )  are derived by multiplying (2.6) or 
(2.6') by S (or respectively, by K), summing over S (or K), and dividing 
by N. If we neglect, in the limit N ~ oo, all cumulants and fluctuations we 
obtain the mean-field equations. For rules R.1, R.2, and R.3, they are 

ds 
- -  = - s  + x s ( k  - s) - y s  2 
dt 

(3.2) 
dk 
- -  = - - y s  2 

dt 

For rules R.1, R.2, and R.3', they are 

ds 
dt s + x s ( k  - s)  - y s  3 

(3.2') 
dk 
- -  = - - y s  3 

dt 

For both systems (3.2) and (3.2)' the stationary solutions are s = 0, k = ko 
for any value ko. 

1. Analys i s  o f  the sy s t em (3.2). We linearize (3.2) around a 
stationary point (0, ko) so that 

ds 
- -~ , ,~s ( -  1 + xko)  (3.3) 

If ko > l / x ,  then (0, ko) is repelling; if ko < l / x ,  then (0, ko) is attracting. 
We define a new variable 6 by 

k = l + f  (3.4) 
x 

and the system (3.2) becomes 

ds 
--~ = xs6  - ( x + y )  s 2 

d6 
__ = - y s  z 
dt 

It follows that Eq. (3.2) has two particular solutions 

1 y 1 
k - - -  ~ (3.5) 

S = x ( t  + to)' x2( t  + to) x 

1 1 1 
- ( 3 . 6 )  

S = y ( t  + to), k y ( t  + to) + X  
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In the (s, k) space these particular solutions define two lines of slope y / x  
and 1, respectively, converging to the point (0, I/x).  We henceforth assume 

y < x  (3.7) 

It follows that all points (s, k) such that 

s<~k<l+Y--s 
X X 

are attracted by the segment s = 0, 0 ~< k < l / x  at an exponential rate due 
to (3.3). On the other hand, all points ( s , k )  such that k > > . l / x + s y / x  
[above the critical line in (3.5)-I are attracted to the point (0, I /x )  and 
approach it with time dependence ~ 1/t. This behavior is self-organized 
critical behavior, namely an open subset of initial conditions is attracted to 
the critical stationary point (0, l / x )  (which separates the repelling from the 
attracting stationary points) with a nonexponential time dependence. 

2. Analysis o f  the system (3.2'). The stability analysis of (3.2') is the 
same as that of (3.2), namely the stationary points are (0, ko) and they are 
repelling for ko> 1Ix and attracting for ko< 1Ix. Let us define a new 
variable 

u = k - s - 1/x (3.8) 

so that (3.2') becomes 

ds 
- -  = X U S  - -  y s  3 

dt 

du 
- -  = - -  X b l S  
dt 

(3.9) 

A particular solution is u =0,  s = [2y(t + to)]-1/2 and as a consequence, 
the line u = 0 cannot be crossed by any other trajectory. Moreover, in the 
(u, s) phase space, the vector field (3.9) is vertical (i.e., parallel to the u 
axis) on the parabola 

bl ~ S 2 x / y  

so that this parabola will be crossed by all trajectories vertically from 
above. Near u = 0, the motion is approximately given by 

ds 
dt ~ - y s 3  SO that s(t) ~ [2y(t + to)] --1/2 (3.10) 
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while 

so that 

d log u 
dt - - x s ~  [ 2y ( t+ to ) ]  -1/2 

-11/2) 

This implies that for large t, u(t)~.s(t) and justifies the approximation 
xus ~ ys 3 for deriving (3.10). Returning to the initial variables (s, k), we see 
that the trajectories with initial conditions satisfying 

k>_.s+ llx 

converge to the critical stationary point (0, l/x) and that for t---, +o% the 
behavior of the trajectories is critical with exponent - 1/2, 

s(t) ~ (2yt) -l/z 

k ( t ) ~ l / x + ( 2 y t ) - ~ / 2 + e x p [ - x ( ~ )  1/2] 

Remark. The system (3.2) can also be analyzed with the variable u, 
as in (3.2'). For that case, however, u does not vanish with exponential 
rapidity, but only as an inverse power. Whether this is a harbinger of the 
ultimate breakdown of the mean-field analysis for the system that obeys 
R.3 is unclear. 

4. A N A L Y S I S  OF T H E  B A C K W A R D  M A T R I X  

We return to the models described in Section 2, but go beyond the 
mean-field analysis. The long-time behavior of the models is controlled by 
the eigenvalue nearest to zero of the transfer matrix U used in Eq. (2.7). 
Recall that the eigenvalues of (2.10) or (2.10') are 2=~<0, so that the 
asymptotic behavior of the probability for the survival of any nonabsorb- 
ing state (i.e., S > 0) is e x p [ - ( m i n  J 2= [) t] ,  the minimum being taken over 
the nonzero eigenvalues. 

The explicit forms of U given in Eqs. (2.10) and (2.10') show that 
w(S, K) is coupled only to w(S', K') for K'= K ( K -  1) and S'= S (S +_ 1). 
It is therefore convenient to arrange the vector [w(S,K)]o~s<.x<~N by 
blocks. Correspondingly, the backward matrix will also be arranged in 
block form. For each K = 0, 1 ..... N, we define a (K + 1 )-dimensional vector 

(w~(S))o~s~K 
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by 

The backward 
following form: 

r 
0 

0 

0 

0 
U =  

0 

0 

wK(S) = w(S, K) (4.1) 

matrix U now has a natural block structure of the 

0 0 0 0 0 

DI 0 0 0 0 

A2 D2 0 0 0 

0 A 3 D 3 0 0 

0 0 A4 D4 0 

0 0 0 A5 """ 

0 0 . . . . . .  
: : " . .  

0 0 0 .... 0 0 

0 0 0 --- 0 0 

The full backward 
written in block form: 

. . .  

. . .  

. . ~  

. . .  

0 

0 

0 

0 

0 

D u - l  0 

Au Du 

matrix U acts on a vector w(S, K) by the following rules, 

(Uw)x=o=O 

(Uw)x=l =Dlwl  

and generally for 2 ~< K ~< N 

( U w ) r = A x w x - l  + Dxwx 

(4.2) 

(4.3) 

Here DK is a ( K +  1 ) x ( K +  1) matrix and AK is a ( K +  1 ) x K matrix. The 
exact definition of these matrices is implicit in Eq. (2.10) or (2.10'). Note 
that for both Eqs. (2.10) and (2.10') there is a part independent of y 
(depending only on the rules R.1 and R.2) and a part proportional to y 
(corresponding to rule R.3 or R.3'). This suggests that we build D~r in the 
following way. First we have 

D 0 l = (0  -01) (4.4) 

while for 2<~K<~N, Dr takes the form 

Dr = Dr(x, y) = Bx(x) + ydt~ (4.5) 

From (2.10) or (2.10') it follows that Bx(X ) is 
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a,Ax) = 

I o 

1 -  

o 

o 

o 

t~ 

o o 

1 x(K- l)'~ x(K-i) 
+ " - ' ~ )  N - i  

(_ 2,<(~<-2)'~ 
-t~+-~-) 

o 

2x(K-2) 
N - I  

(s s=(K-s)'~ 
= t + - - "~ - )  - -  

Sx( K -  S) 
0 

N - I  

x ( K -  1) 

N - I  

-.- K - K  

The first row of Bte is 0. Row number S for 1 ~< S ~< K of Bte is 

(4.6) 

[ S x S ( K -  S)'~ x S ( K -  S) ^ O) 
(o ..... ~  + ~-=i ) ' - ; = - 7  ' ~  . . . . .  (4.7) 

where the element S is in column number S - 1  (and the first column is 
labeled 0). The matrix Ate is diagonal. Its value depends on the choice of 
rule R.3 or R.3'. F o r  R.3, we have 

A t e = - d i a g  ( S ( N ~ ) .  ) (4.8) 

For R.Y we have 

.. { S ( S - 1 ) ( S - 2 ) k  
B te = --aiag t (N--  1 ) ( N -  2) ) (4.8') 

In particular, the first row of Ate is 0, so that the first row of Dte is 0. 
So far we have concentrated on the matrix Dte of Eq. (4.3).'We must 

still write down the ( K +  1) x K matrix Ate which also appears in Eq. (4.3) 
and is proportional to y. The first column and the first two rows of Ate 
are 0. For rule R.3, 2 ~< K ~< N, Ate is 

t0 0 

0 0 

y 0 2.1 

0 

0 

0 
Ate= - - -  

0 0 3 .2  

. . . . . .  

N - I  
0 t 0 

K . ( K -  1) 

(4.9) 
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and row number  S (counting the first row as zero) of A r  is 

0 ..... O, y S ( S -  1 ) 
N - 1  ) , 0  ..... 0 

with the nonzero element in column number  S - 1  (again, the leftmost 
column is labeled 0). For  rule R.3', 2 ~< K~< N 

Ax 
( N -  1 ) (N-  2) 

/0 0 0 0 ... 0 \ 
0 0 0 0 -.. 0 
0 0 0 0 ... 0 
0 0 3.2.1 0 ... 
0 0 0 4.3-2 

l 
0 0 . . . . . .  K . ( K - 1 ) . ( K - 2 ) /  

(4.9') 

and row number  S of A K is 

y S ( S -  1 ) ( S -  2) 0 )  
o ..... o,  -  -bT-g- i ' 0 ..... 

with the nonzero element in column number  S -  1. 
Now, we consider an eigenvector of U of eigenvalue 2. Recalling (4.1), 

this is a collection of ( K +  1) vectors ( w r ( S ) ) o ~ s ~ r  such that 

(Uw)K = 2WK (4.10) 

The eigenvalue 2 = 0  is ( N +  1) times degenerate. The eigenvectors of 
eigenvalue 0 of r u  (i.e., of the forward matrix) are given by Eq. (2.11). Let 
2 # 0  be an eigenvalue of U. We have, using (4.10) and (4.2), 

DI  Wl ~ ~w I 

so that because 2 # 0 ,  either 2 is an eigenvalue of DI or w I =0 .  Let us 
assume that 2 is not  an eigenvalue of DI ..... D r _  1. Then wl ..... w x -  1 are 0 
and we have from (4.3) 

Dr  wr  = 2wK 

so that either 2 is an eigenvalue of D r  or w r = 0. Finally we  have proved 
that each eigenvalue of U is an eigenvalue of D r  for a certain K. 
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Conversely, it is easy to see that if the eigenvalues of the DK'S are all 
different (except the eigenvalue 3. = 0 which is common to all Dx's), then 
every eigenvalue 2 of DK is an eigenvalue of U for the eigenvector 
(wCJ'~)o_<j_< N defined by 

w~j ~') = 0 if J < K 

DKW~')=2W~ ) 

( D j - 2 )  w~j')=Ajw~I for J > K  

If a certain eigenvalue 2 is shared by several matrices DK, we consider 
the largest K such that 2 is an eigenvalue of DK and define a corresponding 
eigenvector (W~))O~J<.N as above. Then D s - 2  is invertible for J >  K. 

We have thus shown that the spectrum of U is the union of the spectra 
of the matrices DK. In Section 5 we will analyze the spectrum of D~--- 
BK(X)+ yA K, considering y to be small and the expression yA K to be a 
perturbation. The spectrum of Dx is therefore found as a perturbation of 
that of B K. 

5. S P E C T R U M  OF B x A N D  P E R T U R B A T I O N  A N A L Y S I S  OF D x 

The matrix BK is related to a matrix that was introduced in refs. 6 and 
7. There, we introduced a stochastic process, the single-step percolation 
process, with rules R.1 and R.2. In this process, the total population was 
M and among these M persons at each time there were S(t) sick people. 
The state of the system was completely specified by S, with 0 ~< S ~< M. For 
that system the transition probabilities were given by 

Pr [S( t  + At) = S(t) - 1 ] = S(t) At 

~S( t ) [M-  S(t)]  zlt 
PrI-S(t + tit) = S(t) + 1 ] = 

M - I  

(~ being the rate). Going to the limit At ~ 0, we obtained the master 
equation 

OP(S, t) ( S -  1 ) ( M -  S +  1) 
( S +  1) P(S+ 1, t)+ e P ( S -  1, t) 

Ot M -  1 

" -  S+ M - I  ~ P(S,t) (5.1) 

The matrix associated with the backward equation was the matrix TM(~) 
given by 
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T ) , ( ~ )  = 

0 0 0 

I -  1+ --ffsi-- 

0 . . . . . .  

0 . . . . . .  

0 . . . . . .  

0 ...  

0 -.- 

{S(  M - S )  

M - 1  

o 

0 

~ { M - -  I I  

M - I  

M - M  ] 

(5.2) 

Note  that TM(~) is not simply obtained from Br(x ) by changing K to M 
and x to ~, because in BK(x) we have. the term x S ( K - S ) / ( N - l )  and in 
TM(~) we have instead r  1). Thus in TM, M plays the roles 
of both K and N. We shall return to this point. 

In refs. 6 and 7, the spectrum of TM(r was studied in considerable 
detail. We now recall those results. Apart from the trivial eigenvalue, tt = 0, 
corresponding to the extinction of tlae disease, P(S) -- 3(S), the first excited 
state was analyzed and the following conclusions drawn for and from its 
eigenvalue #t : 

1. ~ = 1 is critical. Mean-field analysis of this model proves that S = 0 
is stable for ~ < 1 and S- -  1 - 1/~ is stable for ~ > 1. 

2. For  ~ > l, the stochastic process leads to extinction, because the 
only stationary state is 

P(S) = 3(S) 

On the other hand, for { > 1 there is a long-lived metastable state whose 
inverse lifetime is 

,p,, ~ e x p  [ - ( M -  1) ( l  1 

the last form holding for ~ slightly above 1. 

3. At ~ = 1 exactly, the first eigenvalue rescales as 

V 1 
#1 ~ x / ~  (5.4) 

and vl is the ground-state energy of a certain Schr6dinger-like equation. 
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4. If we are near criticality, namely if 

= 1 + - -  ( 5 . 5 )  

then again tq ,-~ vt/,v/-M, where vt = v~(~) is the ground-state  energy of a 
certain Schr6dinger-like equat ion whose potential  term is parametr ized by 
c~ and where: 

(a) For  c t~ - ~ ,  vl ~ -Ict[. 

(b) For  ~ ~ +oo, v~ ~ - C ~ 2 e  "'/2 and C is a constant.  

We now return to the analysis of the spectrum of BK(x). As we have 
seen above,  the only difference between BK(x) and TM(~) is the term 
x S ( K -  S ) / ( N -  1 ), which is replaced by ~ S ( M -  S ) / ( M -  1 ). We identify K 
with M and then define 

x K  
= - -  (5.6) 

N 

The critical value ~ = 1 of the TM(~) process corresponds exactly to the 
fact that  KIN ~ 1Ix, which is the self-organized critical state to which tend 
all trajectories starting above the line k = s + 1Ix in the mean-field analysis 
of Section 3. We sometimes refer to "~" as an "effective" rate for the process 
S + R ~ 2S. In using this term we have in mind that we are truly in the 
larger model  (which includes rule R.3 or R.Y), but that K is not changing 
rapidly, so that  the system behaves like the smaller model  (rules R.1 and 
R.2 only). As such, its transit ion rate for the process S +  R--* 2S is xK/N.  
On the other hand, the smaller model comes with its own parameter  ~ [as 
in (5.1) or (5.2)], which is a fixed quanti ty in the context of that model 
alone. However ,  when the larger model temporar i ly  approximates  the 
smaller one, it does so with an effective ~ parameter ,  taking the value 
xK/N. 

If ~ = x K / N  is well above 1, we obtain an eigenvalue like (5.3), leading 
to a long-lived metastable  state. 

Let us now consider the ne ighborhood of the critical value ~ =  1, 
defined as in (5.5). More  precisely, let us assume that  

K =  N / x  + o~ w/-N (5.7) 

so that  

(5.8) 
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[Recall that K is in fact the M of the TM(~) matrix.] The largest nonzero 
eigenvalue of TM(~) or of B~,. is then given by 

P l -  x//- ~ (vl <0)  (5.9) 

But we need the corresponding eigenvalue 2~ of Dr = BK + yAK, SO that in 
first-order perturbation theory (with respect to y) the eigenvalue of DK is 

2, ~ Pt + y<v,,,[ A~ Iw,,, ) (5.10) 

where (%,1 and [w,,,) are the left and right eigenvectors of TM(~) for the 
eigenvalue p, normalized by (%, [w~,, ) = 1. 

In Appendix A, based on a numerical study of the eigenvalues, we 
evaluate the perturbation term in (5.10) for large K (or, what is the same, 
for large N, because we are near criticality, so that K ~  N/x). The results 
are the following: 

1. For rule R.3, Eq. (A.14) shows that 

),(v~,,[ AKIWu,)=O(1) and (v,,t[ AKiwm)<O (5.11) 

(for N or K tending to infinity). In particular in this case the largest 
nontrivial eigenvalue of DK stays a positive distance from 0 when N ~ oo. 
We have an exponentially rapid approach to the critical state K/N= l /x  
and the self-organized critical behavior is destroyed. 

2. For rule R.Y, Eq. (A.14') shows that 

C 
y(v,,,I AK I,vu,) ~ x / ~  (5.12) 

In particular, in this case the largest eigenvalue of DK stays a distance 
1 / ~  away from zero when N ~  oo, which is the indication of the slow 
decay to the critical state. This is the same scale of spectral gap as occurs 
at criticality for percolitis and which yields the 1/t relaxation. 

Remark 5.1. Since the major conclusions of this article depend on 
perturbation theory, we also made numerical checks of the validity of per- 
turbation theory for these matrices. The perturbation result is obtained 
from the numerically determined eigenfunctions of TM. The nonpertur- 
bative result is gotten by simply diagonalizing the entire matrix (including 
the ),-dependent portion) numerically. The results compared well for 
small y. 
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Remark 5.2. Had we taken a rule R.3" with four S's meeting to give 
three S's and one / ,  the correction would have been O(1/K). Thus a system 
with this rule, whose mean-field theory can be derived as in Section 3, also 
exhibits self-organized criticality. 

Remark 5.3. Although not immediately germane to our purposes, it 
can be seen that near criticality the eigenvalues of the matrix BK have the 
following property: 

{ Number of eigenvalues ~< E } ~ E 2/3 

We show this in Appendix B. Although we only prove the property 
asymptotically, it is found numerically to hold with extraordinary accuracy. 

6. RESCALING AND PERTURBATION THEORY 
FOR THE EIGENVALUES 

Consider the matrix DK given by Eq. (4.5). Recall that Dx is to be 
considered a backward matrix. We are interested in its largest eigenvalue 
2 of DK or, what is the same, of the transposed matrix rD x. Denote 
by (p(S))o~s~x an eigenvector of eigenvalue 2 of rDK, so that 

X 
2p(S)= ( S +  1) p(S+ 1)+ ( S -  1 ) ( K - S +  1 ) - ~ - - ~ p ( S -  l) 

( S ( K -  S) ) 
- S+ N - I  x p (S )+y(Ax) sp (S  ) (6.1) 

where (A~,.) s is the diagonal element in row n = S  of A K, as in (4.8) or 
(4.8'). Define the generating function of p(S) 

K 

f{u)= ~ uSp(S) 
S = O  

It is easy to see that 

I XU 20~.~q Of xu(K-- 1) Of l- -- YRf (6.2) 
x f = ( 1 - u )  ~ N - 1  O,, if-Y-1 

where Rf  is the differential operator defined by 

u2~ O2f for rule R.3 
Rf  = N -  1 Ou 2 (6.3) 

u3 O3f for rule R.3' 
( N -  I ) ( N - 2 )  Ou 3 
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In (6.2) the term (1 - u ) [ . . . ]  is exactly that  obtained in Section 2 of  ref. 7, 
formula (2.6), except that  the x of ref. 7 has here become xerr= 
x ( K -  1 ) f iN-  1 ) (exactly as in Section 5 of the present article). Let us now 
rescale parameters  as in ref. 7, defining 

K - - 1  ct 
xerr-XN_----~= 1 +~-# ,  a = N~'(1 - u )  (6.4) 

Then the first term on the r ight-hand side of Eq. (6.2) becomes 

( l _ u ) [ Of Of x O_~q 
xo." g +-g-L5 G 

- -  U 2 

, &r2j (6.5) 

Moreover ,  the terms Rf become 

f N 2 ' -  ~ for rule R.3 

Rf ~ I .  3,-2 a3f (6.6) 
~v ~ a  3 for rule R.3' 

We see that  in the case of rule R.3, it is impossible to choose fl and y so 
that all terms in (6.5) and (6.6) rescale in the same way [ the best we can 
do is y = f l = l / 3  and ).=l.t/N u3, but then the term N~'-~(O2f/&; 2) in 
Eq. (6.5) does not contr ibute] .  If  we choose rule R.3', then we can take 

= fl = 1/2 and 2 ~ N -  u2, and we obtain a perfect rescaling where all terms 
contribute. Moreover ,  this rescaling is the same as that  of ref. 7 (see 
Sections 4 and 5). This means that  the eigenvalue of the matrix Dr(x, y) 
should be a small per turbat ion of the one of BK(x) in the case of  rule R.3'. 
On the other hand, in the case of  rule R.3, the impossibility of matching 
the scaling of the terms coming from Bx(x) and the term coming from yd x 
suggests that  per turbat ion theory will demonstra te  a failure of spectral 
collapse (hence an absence of self-organized criticality) as we have in fact 
seen in Section 5. The mechanism of the failure in that  case was the fact 
that  per turbat ion theory gave an order of change larger, in terms of powers 
of N, than the "vanishing" (as a function of N) gap. 

7. C O N C L U S I O N  

In this section, we recapitulate and briefly discuss the preceding 
results. We started from the one-step percolation model of refs. 6 and 7, 
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with a fixed population K, a parameter ~, and a variable S. This model is 
critical at ~ = 1. Now, we allow fluctuation of the population K by a coupl- 
ing to a larger reservoir so that the total size is N. To do that, we allow 
new chemical reactions R.3 or R.3' so that K is no longer a conserved 
quantity. As a result the parameter ~ becomes K dependent, namely 

~=xK/N [see Eq.(5.6)] 

where x is the rate parameter of the new model and the new model now 
has two variables S and K. 

We then show that the mean-field theory of this new model exhibits 
self-organized critical behavior, namely, for generic initial data the dynami- 
cal system for the mean-field theory adjusts itself in such a way that the 
effective parameter ~ tends to its critical value 1 and the system tends 
slowly to its corresponding stationary states. 

When we come back to the stochastic dynamics of these models, we 
see that: 

(i) In rule R.3, fluctuations destroy the critical approach to equi- 
librium. Namely a perturbation analysis shows that the leading eigenvalue 
stays away from 0 when N ~ ~ ,  indicating an exponentially fast approach 
to equilibrium. 

(ii) In rule R.Y, fluctuations do not destroy the critical approach. 
The leading eigenvalue tends to 0 as 1 /x /~  for large N. 

We have thus exhibited two models, one of which has true self- 
organized criticality. The not-entirely-reliable mean-field theory suggests 
self-organized criticality for both; however, more comprehensive analysis of 
the stochastic process shows that in fact only the rules R.1, R.2, and R.3' 
have this property. Finally, the model R.1, R.2, and R.3' shows the desired 
spectral properties: a collapse of the eigenvalue spectrum of the'time evolu- 
tion operator, so that "zero modes" are available in the overall dynamical 
process. 

A P P E N D I X  A 

In this appendix, we derive the estimates (5.11) and (5.12). First, we 
know that/~1 is the first nonzero eigenvalue of the matrix Tr(r  defined by 
(5.2) with the value of the parameter ~ defined by (5.8) 

c~ x//-x (A.I) ~ = 1 + - -  
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The first excited state of the master equation is the left eigenvector <vml of 
TK(r Now the generating function of the first excited state 

K 
f , (u )  = ~ uS<v,,~lS) (A.2) 

S=O 

satisfies the generating function equation associated with the master 
equation (5.1) 

- a2f' +(1 - { u )  (A.3) I11.f ~ = (1 - u) I au ----~- Ou] 

[see Eq. (3.12) of ref. 7 with the changes s--.u, N ~ K ,  and x ~ ] .  Next 
we apply the results of ref. 7, Section 5. We define new variables 

v = ( 1 - u ) . v / K  (A.4) 

q = (21)) 1/2 (A.5) 

and rescale 

Y I 

This yields the equation 

v l f l =  Orl - - 5 -  ~ 4 2 

which is Eq. (5.3) of ref. 7 with the replacement ~ --, ~ x/~. Let us define 

G , = L + r / 3  

. 

Then Eq. (A.6) is the backward equation associated with the Fokker-  
Planck operator 

0 2 

The ground state of L is exp l - -G(q) ]  (at the least this is a formal ground 
state). To estimate the first excited state of L, we go to the Schr6dinger 
picture, defining a Hamiltonian by H = - e x p ( G / 2 ) L e x p ( - G / 2 ) .  At the 
level of H we showed in ref. 7 that the excited state f~ corresponds to 

~b ,,o( tl ) = exp [ - G( q )/2 ] [mi.i, ,ol exp[G(y) ]  dy 
ao 
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where r/o has to be chosen as [2ct x/~]  J12 and the corresponding f~ is then 

loin(,, ,,0) f;intm,t0l (84 Ct N//~ y 2 ) 
f l  = exp[G(y)] dy = y exp 2 dy (A.7) 

It remains to normalize f l .  First, 

f ,  I,, =, = f i  I,i: o = 0 

which means that r Z s = o ( V . , I S ) = O .  so that (v,,~lWo)=O. where 
wo(S) = 1 is the trivial eigenvector of T r ( r  with eigenvalue O. Second. we 
have to normalize (v;,,I so that ( v . , I w . , ) =  l. where Iw~,,) is the right 
eigenvector of TK(~) with eigenvalue/JI- 

Now, a numerical study of [w,,~) shows that (SIw;,,)  is 
approximately 1 everywhere except at S = 0 ,  where it is 0; therefore we 
should have 

1= <v,,, I w,,, ) =  (v, , ,Iw,,  o) - ( v , , , I S = O ) =  - ( v , , , I S = O ) =  - f ,  I,,=o 

[actually Iwj,,) must be 0 at S = 0  because it is orthogonal to the trivial 
stationary state &(S) of the master equation (5.1)]. This means that we 
must take the normalized generating function of the normalized state (v;,,I 
to be 

.?l(u) = fi(u) (A.8) 
L I.=o 

Now we can prove (5.11) for the rule R.3. We observe that, using (A.4), 

d2fl~ ,,= I =K-d~-v2di(I ,,=o = K ( v -  ~ "v/x) exp (~ v2 -~x'vl'~v) ,.=o (A.9) 

Moreover, using (A.2), 

1 d2f' = L --S(S-1)(v,,,IS ) (A.10) 
K du 2 ,, = l s -  o K 

(with the normalized eigenstate (v,,I). The second member of (A.10) can 
be also rewritten 

S ( S -  1) N 
(v,ll ~ Iwo) = - ( v ,  ll AK IWo) ~ (A. I I) 

because of (4.8). On the other hand, Iw~,,) is approximately the same as 
IWo), except for S = 0 ,  where it is 0, so that 

(v,,,[ AK IWo)'" (v,,,I AK Iw,,, ) 

822/74/3-4-11 
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and finally we obtain from (A.10) 

1 d2ft ,,= l N 
K du 2 ~ - - K  (vml ~K IWo) (A.12) 

From (A.11) and (A.91 we have 

(v.,I A K I W O ) ~ N f j l . = o  (A.13) 

But  u =  0 corresponds to q = + c ~ ,  so that 

--ft] '=~176 4 ~ 

where qo= (2~ , , /~) ,z .  This integral can be easily done, namely 

) ' -f, l .=o= -P='/za~exp :--~.,/-~ 
Now in (A.12), K / N ~  l/x, so that finally 

(vi,~[ AK Iw. ,)  ~ _~z = O(1) (A.14) 

The same kind of computat ion can be done for the rule R.3'. Instead 
of (A.II)  we have 

-<~,,,i ~,, iWo> = <~,,,I-(-E--~)-CEz_~lWo> 

Similarly, in place of (A.9) we have 

(A.II ' )  

a 3 f  ' ,, = _ x 3 : 2  c l 3 f  l 

= , dr3 v=o 

_ 3,2 d 1 2 

~ -K3/2(1 + e2x) (A.9') 

and instead of (A.10), we have 

1 d3?l ~, S ( S -  1 ) ( S -  2) (v,. IS) 
K 2 du 3 .= = ( K - 1 ) ( K - 2 )  

l S - - O  

S(S - 1 )(S - 2) 
~ (v~,,I (K -  I ) (K-2)  Iwo> (A.lO') 
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so that finally 

<v,,,I ,JK IW,,l> ~ - ( g )  2 -  
K 2 f ,  l . = o  

(K3/2)(1 + ct2x) 

x 2 KI/2 (A.14') 

A P P E N D I X  B 

In this appendix we show that near criticality the eigenvalues of the 
matrix B K have the following property: 

{ Number of eigenvalues ~< E } ~ E 2/3 

Recalling Eq. (A,6), we observe that this equation holds not only for 
the ground state, but for the entire class of eigenstates of B r obtained by 
the rescaling of variables. As in ref. 7, Eq. (A.6) can be transformed to a 
Schr6dinger-like equation ("H" = -�89 + V) with potential 

3 r/2( 1 0t 2) ctr/4 r/6 - 

By a standard Tauberian theorem (which is the correspondence principle 
for large eigenvalues) 

f Ell6 
{Number of eigenvalues ~< E} [ 2 ( E -  r/6/32)] 1/2 E2/3 

J_ El~6 
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